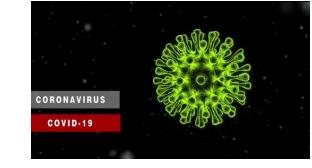

Meta-analysis of clinical trials of ivermectin to treat COVID-19 infection

Dr Andrew Hill, Department of Pharmacology, University of Liverpool, UK

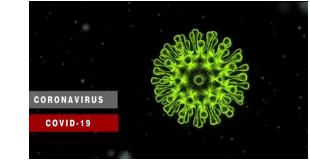
Introduction


Ivermectin is a widely available, generic treatment, being evaluated in 56 randomised clinical trials to treat COVID-19 worldwide, in over 7000 patients.

Mechanism of action likely to be anti-inflammatory (animal models).

No individual clinical trial is large enough to clearly establish efficacy The combined data from all available clinical trials may be large enough to assess clinical efficacy reliably

Research question


Is there enough clinical evidence to support the worldwide approval of ivermectin to treat COVID-19?

Endpoints:

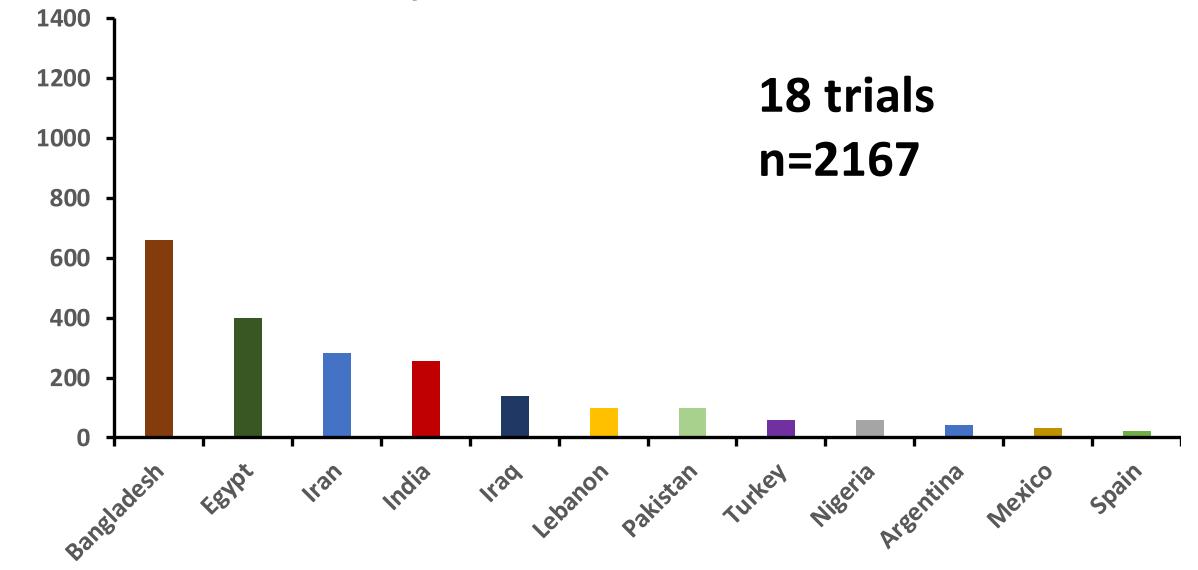
Viral clearance (PCR) Time to clinical recovery Duration of Hospitalisation Survival

Search strategy

Systematic review of randomised trials of ivermectin to treat COVID-19 infection:

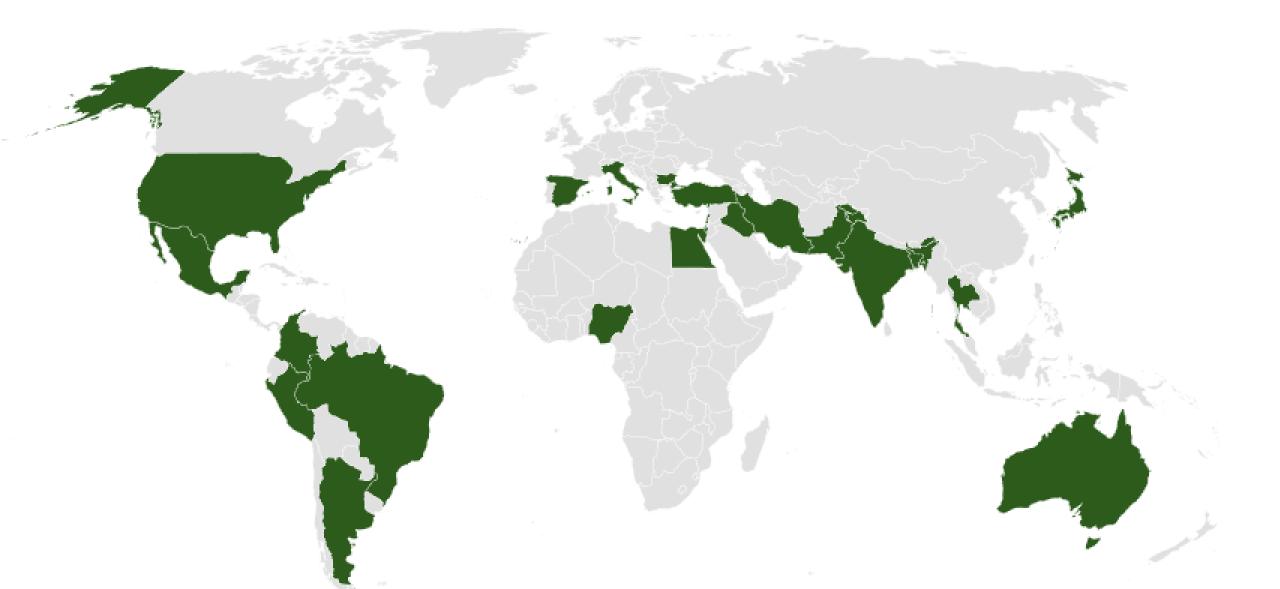
PUBMED EMBASE

Archive pre-print databases (MEDRxiv, Research Square) <u>www.clinicaltrials.gov</u>.

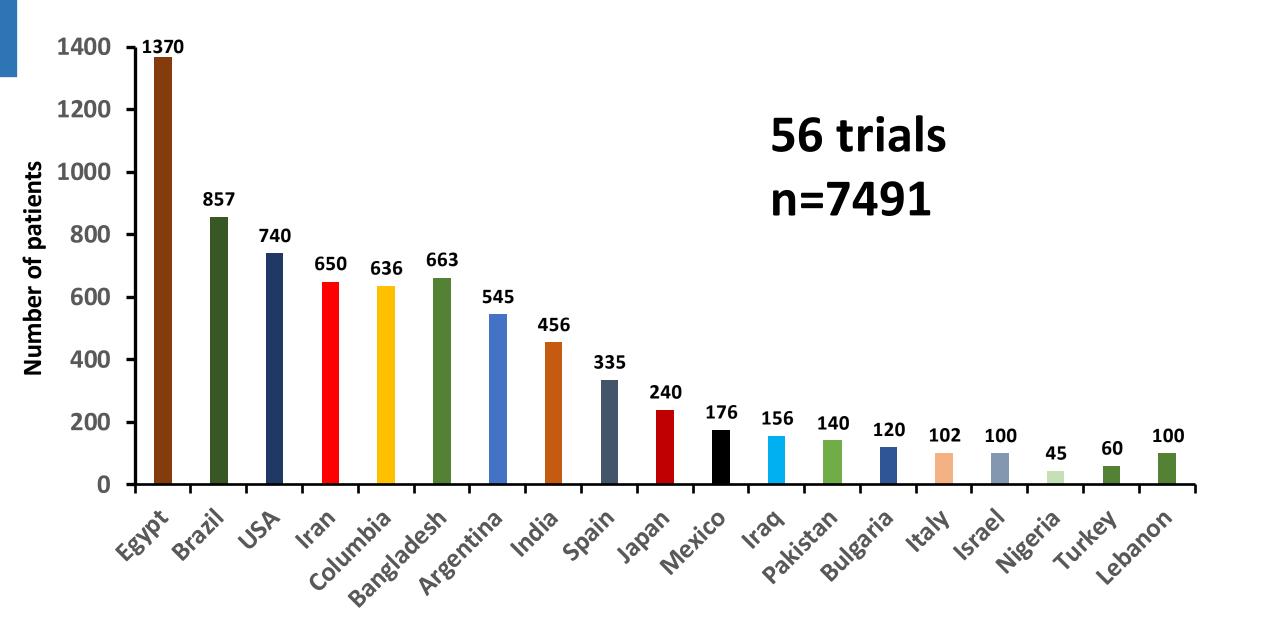

Coronavirus Antiviral Research Database (CoV-RDB)

WHO clinical trials website

Country-level clinical trials websites (Egypt, Iran, India, China)



Randomised clinical trials of ivermectin in meta-analysis

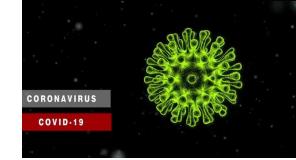


Number of patients

Clinical trials of ivermectin in at least 21 countries worldwide

All randomised clinical trials of ivermectin

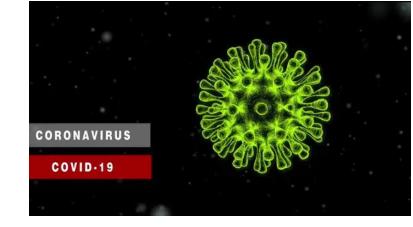
Ivermectin trials with dosing on Day 1 only, 9 randomized trials, n=1125


Study	Country	Daily dose	Duration	Sample Size	Patients	Intervention Arm	Comparator Arm
Spoorthi et al	India	0.2 mg/kg	1 day (DB)	100	Mild to moderate	Ivermectin + Doxycycline	Placebo
Raad et al	Lebanon	0.2 mg/kg	1 day (SB)	100	Mild	Ivermectin + SOC	Standard of Care
Asghar et al	Pakistan	0.2 mg/kg	1 day (OL)	100	Mild / moderate	Ivermectin + SOC	Standard of Care
Rezai et al	Iran	0.2 mg/kg	1 day (DB)	103	Moderate / severe	Ivermectin + SOC	Standard of Care
Mohan et al	India	0.2-0.4 mg/kg (elixir)	1 day (DB)	157	Mild / moderate	Ivermectin + SOC	Placebo + Standard of care
Mahmud et al	Bangladesh	12 mg	1 day (DB)	363	Mild/ moderate	Ivermectin + Doxycycline + SOC	Standard of Care
Chowdhury	Bangladesh	0.2 mg/kg	1 day (DB)	116	PCR positive	Ivermectin + Doxycycline	HCQ + Azithromycin
Podder et al	Bangladesh	0.2 mg/kg	1 day (OL)	62	Mild	Ivermectin + SOC	Standard of Care
Saint	Spain	0.4 mg/kg	1 day (DB)	24	Moderate	Ivermectin	Placebo

Ivermectin trials with multi-day dosing 9 randomized trials, n=1042

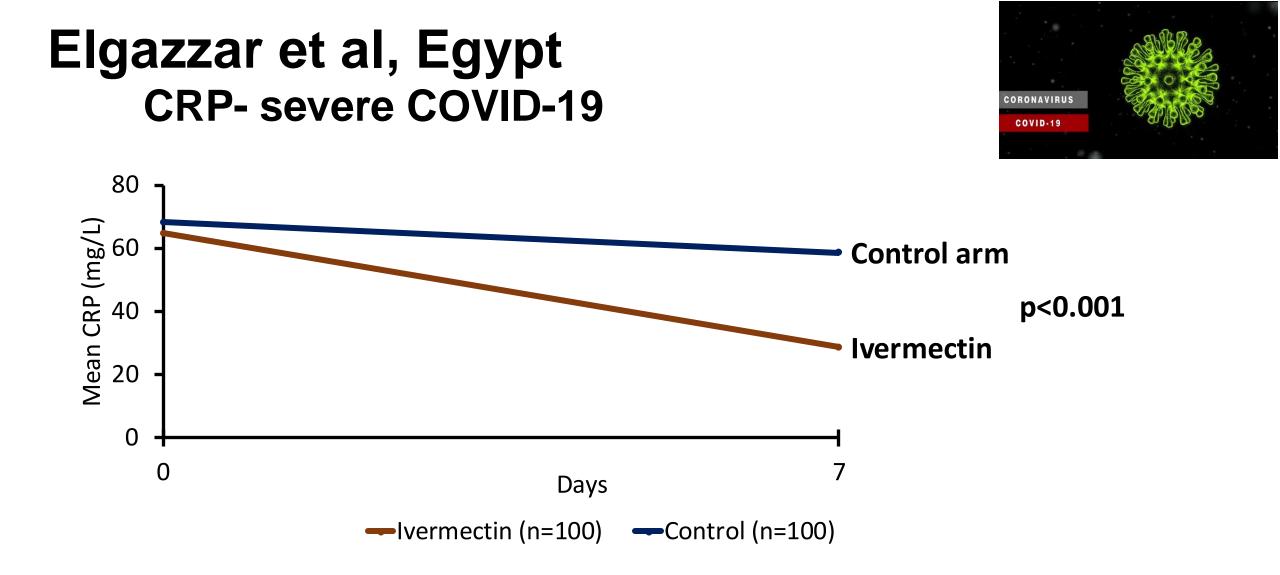
Study	Country	Daily dose	Duration	Sample size	Inclusion criteria	Intervention Arm	Comparator arm
Elgazzar et al	Egypt	0.4 mg/kg	5 days (OL)	400	Mild to severe	Ivermectin + SOC	HCQ + SOC
Niaee et al	Iran	0.2 - 0.4 mg/kg	1-3 days (DB)	180	Mild / moderate	Ivermectin + SOC	Standard of Care + Placebo
Hashim et al	Iraq	0.2 mg/kg	2-3 days (SB)	140	Symptomatic	Ivermectin + Doxycycline + SOC	Standard of Care
Ahmed et al	Bangladesh	0.2 mg/kg	5 days (DB)	72	Mild	Ivermectin + SOC	Standard of Care Placebo
Chachar et al	Pakistan	0.2 mg/kg	7 days (OL)	50	Mild	Ivermectin + SOC	Standard of Care
Garrahan et al	Argentina	0.6 mg/kg	5 days (OL)	45	Outpatients	Ivermectin + SOC	Standard of Care
Espitia et al	Mexico	0.2 mg/kg	5 days (OL)	35	Mild to moderate	Ivermectin + AZI + Cholecalciferol	Standard of Care
Okomus et al	Turkey	0.2 mg/kg	5 days (DB)	60	Severe	Ivermectin + SOC	FAVI/HQ/AZI (SOC)
Babaloa et al	Nigeria	0.1-0.2 mg/kg	2 / week (DB)	60	Mild	Ivermectin + SOC	Placebo + LPV/r (SOC)

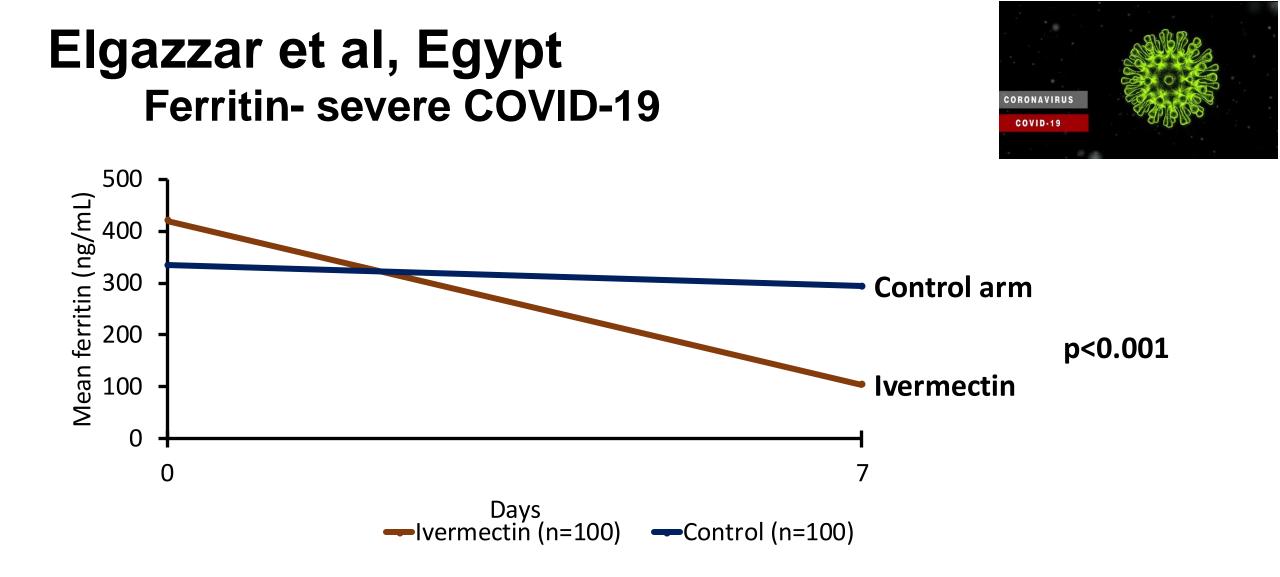
Meta-analysis - methods

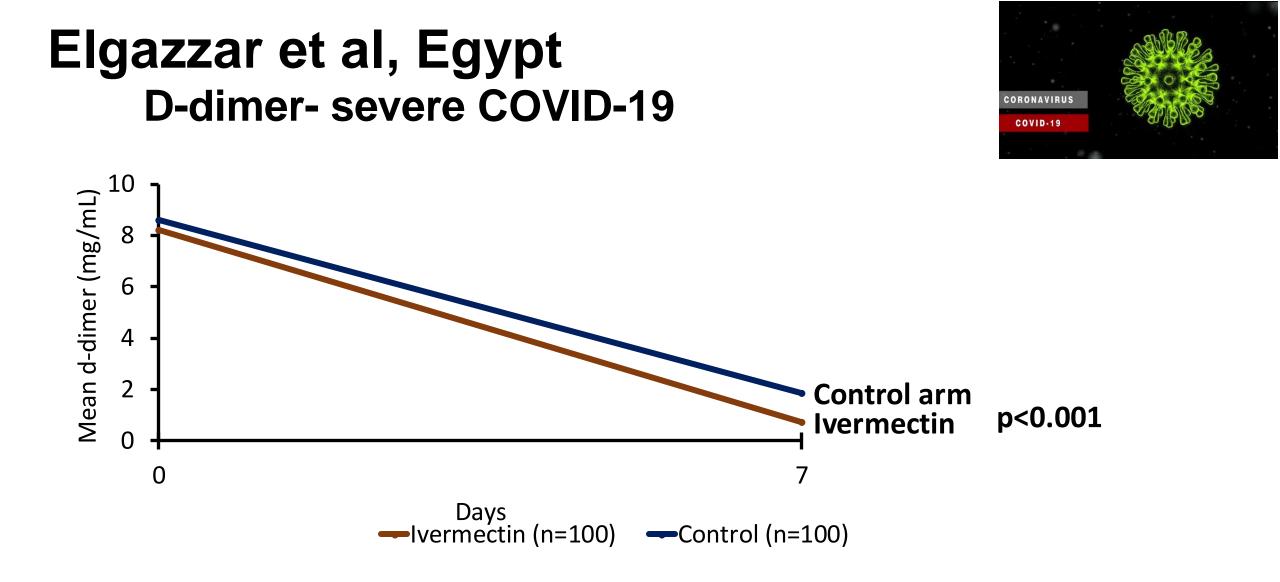


Only the randomised clinical trials were included: in WHO GRADE criteria, systematic review and meta-analysis of RCTs provides the highest level of evidence

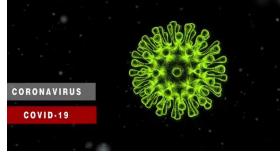
Cochran Mantel-Haenszel testing with inverse variance weighting and random effects modelling was used to compare survival between ivermectin with control treatment. Other outcomes were summarised for each study individually

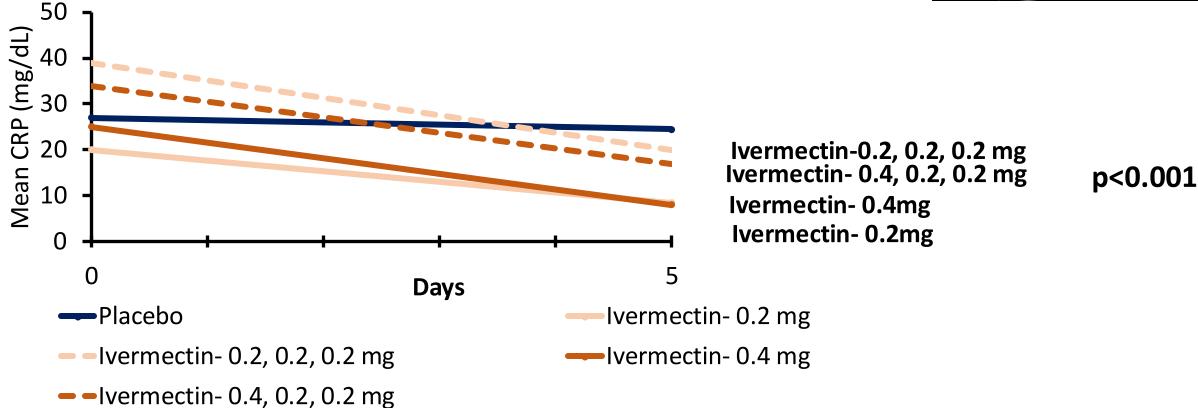

Effects of ivermectin dose on response were investigated


Effects on inflammatory markers


Reference: https://www.researchsquare.com/article/rs-100956/v1

Reference: https://www.researchsquare.com/article/rs-100956/v1


Reference: https://www.researchsquare.com/article/rs-100956/v1

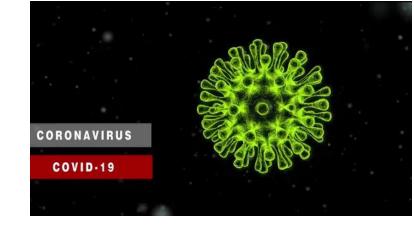


ACTaccelerator ACCESS TO COVID-19 TOOLS

Niaee et al, Iran CRP

Reference: https://www.researchsquare.com/article/rs-109670/v1

ACTaccelerator ACCESS TO COVID-19 TOOLS



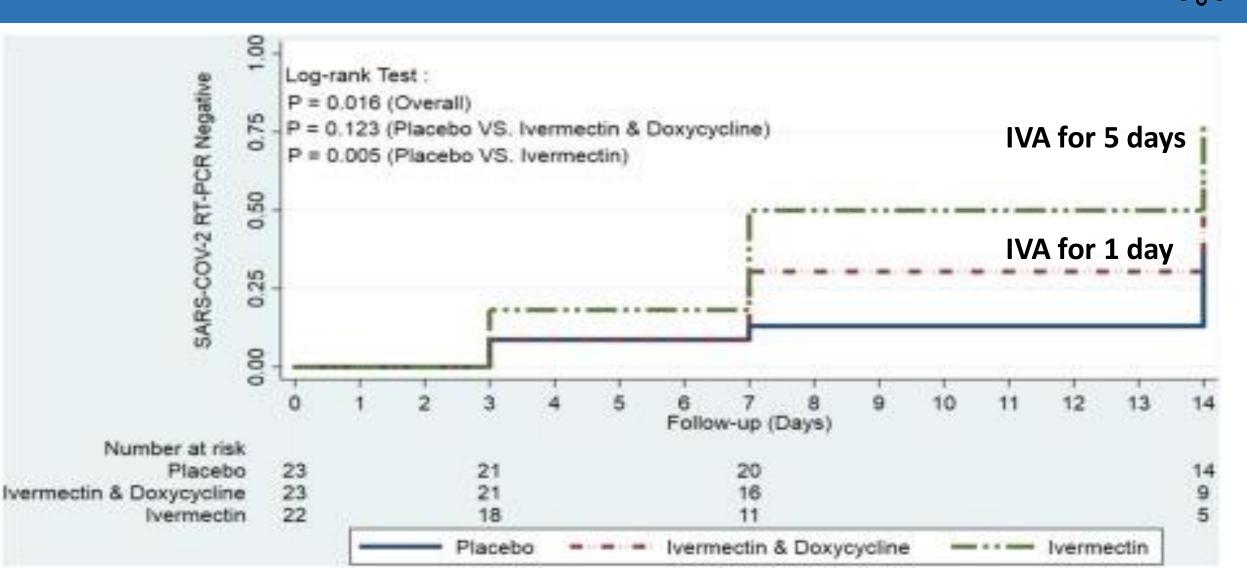
Inflammatory markers for 5 vs 1 day course of ivermectin (N=68)

Test	Ivermectin 5 days (n=22) Day 1 Day 7 P-		Р-	Ivermectin 1 days & Doxycycline (n=23) Day 1 Day 7 P-			Placebo (n=23) Day 1 Day 7 <i>P</i> -		
C-reactive protein (mg/dl)	2.2 ± 3.6	0.3 ± 0.3	value 0.02	2.6 ± 4.7	1.1 ± 2.6	value 0.07	2.9 ± 4.9	1.4 ± 4.8	<i>value</i> 0.27
Ferritin(ng/ml)	268.5 ± 272.6	211.3 ± 201.0	0.06	258.7 ± 282.1	212.9 ± 207.8	0.17	222.4 ± 208.2	217.8 ± 203.6	0.85

Reference: <u>https://www.ijidonline.com/action/showPdf?pii=S1201-9712%2820%2932506-6</u>

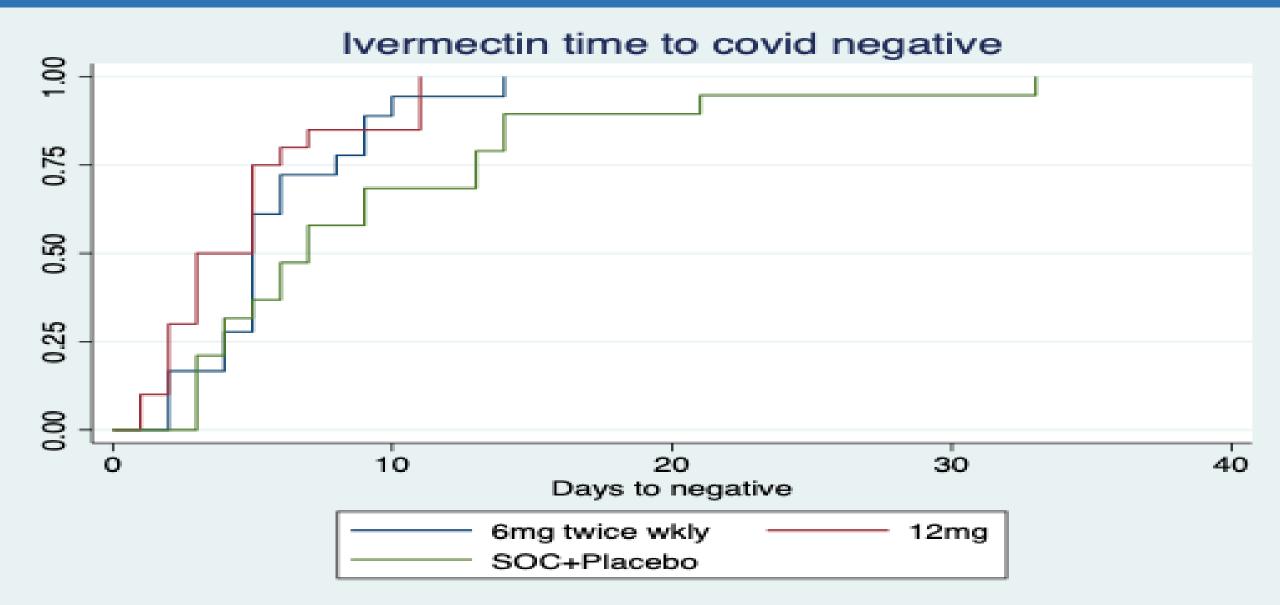
Values mean ± SD

Effects on viral clearance



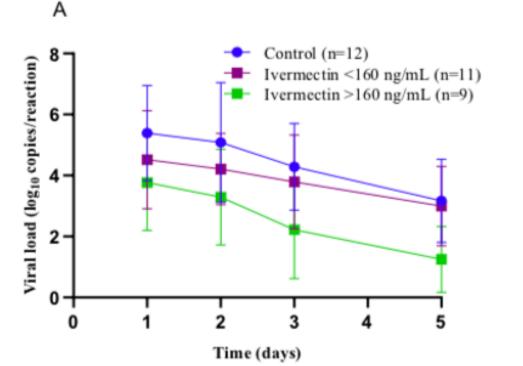
Effects of Ivermectin on viral clearance in randomized trials – dosing on Day 1 only

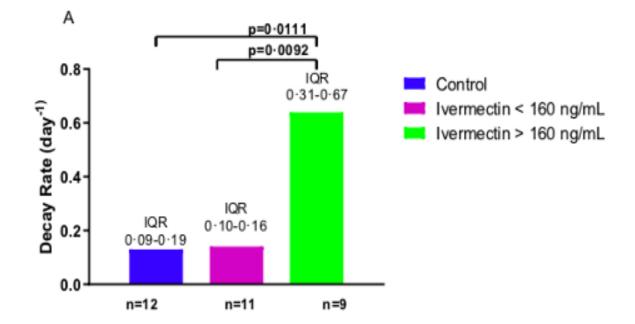
Study	Country (n)	Daily dose	Duration	Viral load endpoint	Result IVA vs Control	P value
Mahmud et al	Bangladesh, n=363	12 mg	1 day (DB)	Detectable Day 14	8% vs 20%	p < 0.001
Asghar et al	Pakistan, n=103	0.2 mg/kg	1 day	Undetectable Day 7	90% vs 44%	p < 0.001
Chowdhury	Bangladesh, n=112	0.2 mg/kg	1 day (DB)	Time to PCR neg	9 vs 9.3 days	p = n.s.
Podder et al	Bangladesh, n=62	0.2 mg/kg	1 day (OL)	Day 10 PCR neg	90% vs 95%	p = n.s.
Raad et al	Lebanon, n=100	0.2 mg/kg	1 day	Day 3	Ct values	p = 0.01
Mohan et al	India, n=157	0.2 – 0.4mg/kg Elixir	1 day	Undetectable Day 5	48% vs 31%	p = n.s.


Effects of dosing on viral clearance

Link to publication: : https://doi.org/10.1016/j.ijid.2020.11.191

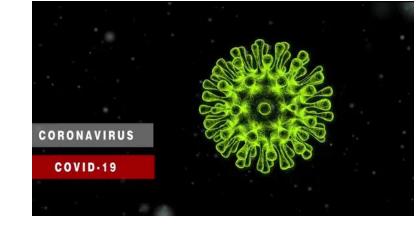
Nigeria – Viral clearance by dose




Argentina - Viral Load reduction by drug levels

Viral load by quantitative RT-PCR since treatment initiation (mean and SD) and viral load reduction between baseline and day-5 (median and IQR)

Viral load decay rates by quantitative RT-PCR in controls and IVM treated patients according to median plasma concentrations of IVM


**By the ratio between the area under the IVM plasma concentration curve and the area under the viral load curve (AUCivm/AUCvl)

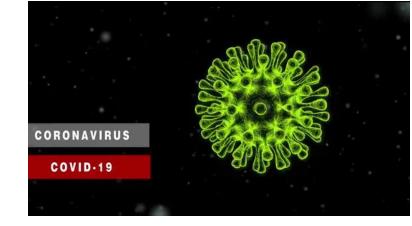
Effects of Ivermectin on viral clearance in randomized trials – multi-day dosing

Study	Country (n)	Daily dose	Duration	Viral load endpoint	Result IVA vs Control	P value
Elgazzar et al Mild / moderate	Egypt, n=200	0.4 mg/kg	5 days (OL)	Days detectable	5 vs 10 days	p < 0.001
Elgazzar et al Severe	Egypt, n=200	0.4 mg/kg	5 days (OL)	Days detectable	6 vs 12 days	p < 0.001
Okomus et al	Turkey, n=60	0.2 mg/kg	5 days (DB)	Day 10 PCR Neg	88% vs 38%	p = 0.01
Garrahan et al	Argentina, n=45	0.6 mg/kg	5 days	PK/PD	Dose-related	p = 0.02
Babaloa et al *	Nigeria, n=60	0.1-0.2 mg/kg	2 / week (DB)	Time to PCR neg	2 x faster clearance	p = 0.003
Ahmed et al *	Bangladesh, n=72	0.2 mg/kg	5 days (DB)	Time to PCR neg	7 vs 14 days	p = 0.005
4						

* dose-response effects seen

Effects on clinical recovery and hospitalisation

Effects of ivermectin on hospitalization or clinical recovery – dosing on Day 1 only



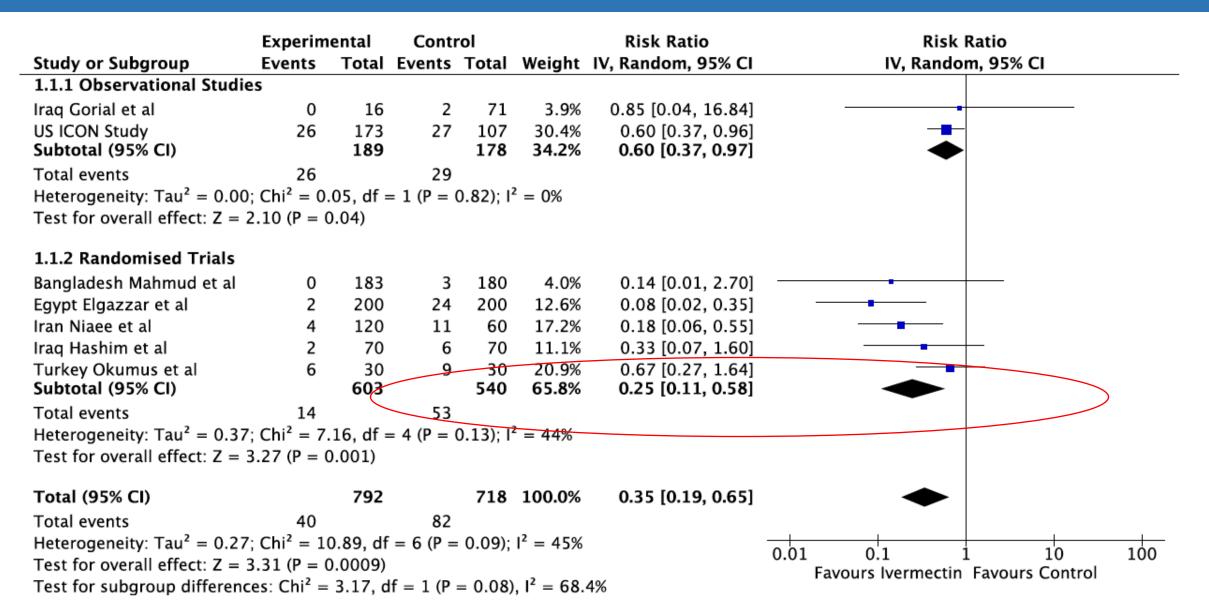
Study	Country	Daily dose	Duration	Endpoint	Results IVS vs control	P value
Mahmud	Bangladesh n=400	12 mg	1 day (DB)	Early clinical improvement	61% vs 44%	p = 0.013
Chowdhury	Bangladesh n=116	0.2 mg/kg	1 day (DB)	Time to clinical recovery	5.9 vs 6.9 days	p = 0.071
Podder	Bangladesh n=62	0.2 mg/kg	1 day (OL)	Time to clinical recovery	5.3 vs 6.3 days	p = n.s.
Rezai	Iran n=103	0.2 mg/kg	1 days (OL)	Time to clinical recovery	4.1 vs 5.2 days	p = 0.01
Rezai	Iran n=103	0.2 mg/kg	1 days (OL)	Days in hospital	6.9 vs 8.4 days	p = 0.01
Raad	Lebanon n=100	0.2 mg/kg	1 day (OL)	Hospitalisation	0% vs 3%	p = n.s.
Spoorthi	India n=100	0.2 mg/kg	1 day (SB)	Time to clinical recovery	3.7 vs 4.7 days	p=0.03
Spoorthi	India n=100	0.2 mg/kg	1 day (SB)	Time in hospital	6.7 vs 7.9 days	p=0.01
Mohan	India n=157	0.2 – 0.4 mg/kg Elixir	1 day (SB)	Time to clinical recovery	4.3 vs 4.6 days	p = n.s.

Effects of ivermectin on hospitalization or clinical recovery – multi-day dosing

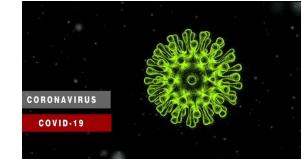
Study	Country	Daily dose	Duration	Endpoint	Results IVA vs control	P value
Elgazzar Mild/moderate	Egypt n=200	0.4 mg/kg	5 days (OL)	Days in hospital	5 vs 15 days	p < 0.001
Elgazzar Severe	Egypt n=200	0.4 mg/kg	5 days (OL)	Days in hospital	6 vs 18 days	p < 0.001
Chachar	Pakistan n=50	0.2 mg/kg	7 days (OL)	Day 7 Clinical recovery	64% vs 60%	p = n.s.
Okomus	Turkey n=60	0.2 mg/kg	5 days (DB)	Day 10 Clinical improvement	73% vs 53%	p = 0.10
Niaee	Iran n=165	0.2 - 0.4 mg/kg	1-3 days (DB)	Days in hospital	6.5 vs 7.5 days	p = 0.006
Hashim	Iraq n=140	0.2 mg/kg	2-3 days (SB)	Time to clinical recovery	10.6 vs 17.9 days	p < 0.001

Effects on survival

Survival benefits in ivermectin Trials


Reduction in death rate = 75% (95% C.I. 42%-89%), p=0.001

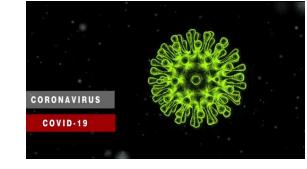
Trial	Dosing	Ivermectin	Control
Hashim (Iraq)	0.2-0.4 mg/kg 2-3 days	2/70	6/70
Elgazzar (Egypt)	0.4 mg/kg 5 days	2/200	24/200
Mahmud (Bangladesh)	0.2 mg/kg, 1 day	0/183	3/180
Niaee (Iran)	0.2 mg/kg 1-3 days	4/120	11/60
Okomus (Turkey)	0.2 mg/kg, 5 days	6/30	9/30
Total		14/603 (2.3%)	53/540 (10%)



Meta-analysis for All-cause mortality

Current results are from 18 randomised trials in 2167 patients, another 37 clinical trials registered (total 7491 patients)

Potential for publication bias – are there trials with unpublished results?


Individual trials can have limited statistical power

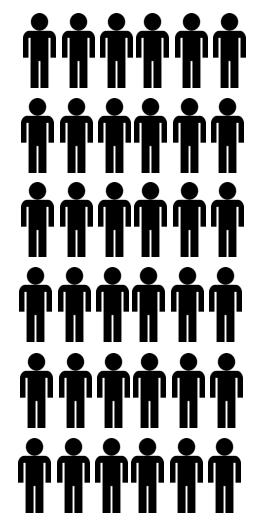
Several trials were open-label – potential for investigator bias

Range of doses and durations. Endpoints differ between trials

Implications: treatment as prevention

A 5-day course of ivermectin is associated with significantly faster clearance of SARS-CoV-2 versus control treatment

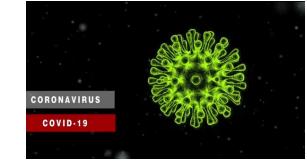
This treatment effect is consistent across five randomised trials


If undetectable viral load lowers the risk of onward transmission, a "test and treat" approach could significantly lower the risk of patients transmitting the virus.

Same day "Test and Treat" strategy

CORONAVIRUS COVID-19

Rapid viral load test


Negative: Vaccination

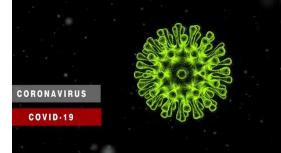
Positive: Treatment with ivermectin

ŤŤŤŤŤ

New trial data emerging

Bulgaria (n=120) – Dr Petkov – January 4th

Brazil (n=176) – Dr Exman - Jan 8th

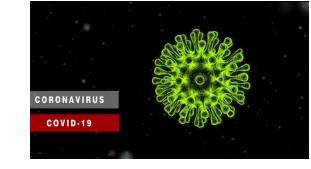

```
Columbia (n=450) – Dr Lopez - Jan 22nd
```

```
Argentina (n=500) – Dr Zoni – Feb 5<sup>th</sup>
```

Mexico (n=3000) – dose-ranging - Dr Hernandez – Feb 5th

Conclusions

In this meta-analysis of 18 randomised trials in 2167 patients


Ivermectin treatment was associated with:

Faster time to viral clearance Shorter duration of hospitalisation Higher rates of clinical recovery 75% improvement in survival rates (95% C.I. 42-89%)

Dosing for 5 days provides the strongest virological and clinical benefits

Next Steps: review on Feb 5th?

Detailed assessment of data quality from each trial (Cochrane handbook, evaluation of bias – questions to trials needed)

Integrate results from key emerging trials

Decisions on integrating ivermectin into new randomised studies:

Mild infection: lower risk of hospitalisation, faster viral clearance Moderate/severe infection: faster clinical recovery, improved survival

